
coordinate; ~, shear stress; Fs integral moments of rheological function f(~); ~w, stress 

at horizontal substrate; ~v, stress at vertical wall; x0, v0, coordinate and velocity of 
motion of film edge; Q(t), liquid influx; ~, ~, self-similarity exponents; ~($), dimensionless 
function of dimensionless argument; B(a, b), beta function; C, numerical constant; d, distance 
between vertical planes. 
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SPREADING OF SMALL LIQUID DROPS ALONG A FLAT SURFACE 

A. S. Romanov UDC 541.24 

We discuss two limiting spreading laws for small drops of a viscous liquid 
which are supported by the experimental data. 

Drops of coolant are sprayed onto a surface in order to obtain "soft" cooling. Calcu- 
lation of the effectiveness of the heat transfer in this case is not possible without a know- 
ledge of the processes of wetting and spreading of the drops adhering to the surface. Be- 
cause of their small size, one can assume that the drops are isothermal with a variable tem- 
perature. 

A phenomenological method of describing the spreading of a partially wetting liquid in 
the viscous regime was given in [i]. In this method an additional body force (equal to the 
gradient of the chemical potential) is introduced into the equations of hydrodynamics. For 
an incompressible liquid under isothermal conditions [2] this approach is equivalent to in- 
troducing an additional "disjoining" pressure [3, 4]. 

The equations of motion of a viscous liquid, written in the approximation of the theory 
of lubrication [5], together with the boundary conditions on the surface of the liquid drop, 
can be solved for the function h(x, y, t) determining the shape of the free surface [6] [x 
and y are Cartesian coordinates in the plane of the solid surface z = 0; t is the time; the 
shape of the free surface of the liquid is given by the equation z = h(x, y, t)]. 

We assume that the shape of the drop is axially symmetric. With no loss of generality, 
we can take the line x = y = 0 as the symmetry axis. Let a(t) be the radius of the circle 
wetted by the liquid on the solid surface z = 0. Then the equation of the line of throe- 
phase contact is x 2 + y2 = a2. For further analysis it will be convenient to introduce po- 
lar coordinates: r 2 = x 2 + y2, ~ = arctg (x/y). By symmetry h = h(r, t). If we then intro- 
duce the "local" coordinate x* = a(t) - r, we find that close to the surface of the drop 
(x* § +0) the equation for the shape of the free surface reduces to the corresponding equa- 
tion for the "plane" case considered in [i], which can be written (in dimensionless vari- 
ables) 

1 . . . .  02~ + R  0 u = 0 ,  u~---- da* ( 1 )  
-2-- o~  -~j [~o(~, ~)I ~ ~ at* 

Hare L = /o~pg is taken as the unit of length; T = 3 pL/o is the unit of time; B = a 2 - 02 
0, ~(q, t) ~ 0 is the angle of inclination of the surface of the drop to the solid surface 
(in the approximation considered here ~2 ~ (Sh/Sx,)2); @ is the equilibrium value of the 
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wetting angle; R is a dimensionless constant characterizing the magnitude of the chemical 
potential (according to the estimates of [i] R ~ i0-12); q = h/L; a * =a /L; t* = t/T. The 

function ~0(q, 6) determines the dependence of the chemical potential of the liquid parti- 
cles on the surface of the liquid film near the line of three-phase contact. Following 
[7, 8], it was assumed in [i] that ~0 = q-35. The detailed analysis of (i) provided in [i] 
shows that the asymptotic model of the spreading of partially wetting liquids is complete 
and consistent. It was found, for example, that for q = 0 (i.e., on the line of three-phase 
contact) the Young condition $ = 0 is always satisfied. 

Putting ~ § 0, s ~ 0 in (i) and redefining the dependent variable ~ = (ulO)~*, we can 
eliminate the quantities u and 0 from (i). Hence in the limit e + 0 we have the direct pro- 
portionality 6 ~ u/e. As shown in [i], the condition s ~ 8 is satisfied everywhere where 
(i) holds if u/03 << i. 

In the other limiting case ~ >> 02 , e2 >> 02 we can put s ~ ~i/2. It then follows from 
(i) that ~ ~ u 2/3. 

An approximate solution of (i), valid for arbitrary values of the variable q 2 0 and 
the spreading rate u 2 0, is found by using the weak logarithmic monotonically increasing 
native of the function s(q) for u > 0, as established in [i, 9]. Hence we can put s = const 
in the last term in (i). With the above expression for ~0 (q, $), (i) becomes linear. The 
solution in this case has been studied in [i] and for 1 >> q >> ~R ~ i0 -~ it can be written 
as 

~ff = - - .  (v + in R/nD + 0 (% (2)  

w h e r e  ~ i s  g u l e r ' s  c o n s t a n t .  F o l l o w i n g  m o d e r n  c o n v e n t i o n  [ 4 ,  1 0 ] ,  we d e f i n e  t h e  d y n a m i c a l  
w e t t i n g  a n g l e  a s  t h e  a n g l e  o f  i n c l i n a t i o n  o f  t h e  s u r f a c e  o f  t h e  d r o p  a t  a c e r t a i n  f i x e d  
h e i g h t  q = q0 ,  r  << q0 << 1 ( i . e . ,  a t  a h e i g h t  w h i c h  i s  m a c r o s c o p i c a l l y  s m a l l ,  b u t  y e t  so  
l a r g e  t h a t  t h e  d i s j o i n i n g  p r e s s u r e  i s  n e g l i g i b l y  s m a l l  a t  q = q 0 ) -  T h e n ,  n e g l e c t i n g  q u a n -  
t i t i e s  o f  o r d e r  0 ( ~ ) ,  we o b t a i n  

where s d = S(qo) , Sd = $(qo). 

/ '2 ~tBcl =uco,  ~o =- - -  ? - -  ln R, q o > O  , 

Following [ii], we assume that the shape of small drops is nearly spherical. 
case 

(3) 

In this 

aa __ 3V (1 @ cos ~o) ~ ( 4 )  

sin So (2 + cos =o) 

Here s0 is the dynamical wetting angle and V is the volume of the drop. Below we will iden- 
tify s 0 = s d. In the approximation of (i), relation (4) can be rewritten as a 3 = 4V/~s d. 
Differentiating this last relation with respect to time, we obtain 

dad / 3 !~1 a 

T -  L-C) 
H e r e  T = a t / 2 ~ a o ,  ao = ( 3 V / 4 ~ )  1 /3  

Substituting (3) into (5), we can transform (5) to the form 

(5) 

Integrating this relation, we have 

= (_2A~/~ 3 ~ ,0/3~(02@, (6) 
t 3 7  lo ,~ 

9 t  ~ i 
where the function X(02/Sd 2) is given as the series % = (0~!~ d) (I@0,6i) -i. When 02/Sd 2 << i, 

f=0 

X ~ i, and when 02/Sd 2 + 1 the function X has a logarithmic singularity. 

As noted, the constant w can be determined for the dimensionless height no at which the 
dynamical wetting angle s d is defined. At this height the interior and exterior asymptotic 
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Fig. i. Quantity ~ = ~d z~ as a 
function of dynamical wetting angle 
~d for the spreading of glass drops 
with different admixtures of TiO 2 
and for different temperatures: i, 
2, 3) T = I010 K; 5, I0, 20% Ti02, 
respectively; 4) T = 1105 K; 10% 
Ti02; 5, 6) T = 1180 K and 5, 10% 
Ti02; the theoretical curves i, 2, 
3 correspond to 8 = 0.i; 0.15; 0.2. 

solutions of the spreading problem are joined together. Putting q0 = 10/R, for example, 
we obtain m ~ 4 from (3). However, in comparing the theoretical relations with the experi- 
mental data, one must keep in mind that the quantities q0 and R are somewhat uncertain be- 
cause of the fact that the height at which the contact angle is determined experimentally is 

�9 not known exactly and also because of the nearly complete lack of information on the magni- 
tude of molecular interactions in particular cases for partial wetting. Nevertheless, be- 
cause of the weak logarithmic dependence of m [given by (3)], this quantity can be estimated 
fairly accurately by obtaining the best fit to the experimental data. It then follows from 
(3) that m is of order one. 

Experimental data was presented in [ii] on the dependence of the dynamical wetting angle 
on spreading time of glass drops with TiO= admixtures for different temperatures on a special- 
ly prepared platinum plate (Figs. 2 and 3 of [ii]). Figure i shows the dependence of the 
quantity ~ = ~d I~ on the angle ~d from the experimental data and relation (6), where it 
was assumed that 0.3(2/3)z/3m = 2.5. The agreement between the experimental data and the 
theoretical calculations can be considered as completely satisfactory when one takes into 
account the complexity of determining the equilibrium contact angle 8 from dynamical experi- 
ments of the type carried out in [ii] (compare [12]) and also the relative uncertainty in ~. 

Study of the function X(82/=d 2) and the experimental data (Fig. i) show that the spread- 
ing process is divided into two stages. In the first stage ~d = >> 82 . In this case X = i 
and the quantity ~ = const and does not depend on the equilibrium angle %. Therefore, a = 
~-o.i a00.9(ot/p)0.z, ~ ~ 1.86. Since ~ is of order unity, we can write ~ ~ 2a0~ ~ 
i.e., the i/I0 law holds which is widely supported experimentally [13, 14]. This first stage 
of spreading of liquid drops can be called the power-law stage, since the dependence a ~ t ~ 
has the form of a power law. 

2 2 In the second stage ~d + 8 . In this case (6) is rewritten in the form ~ = 2(2~3) z/3- 
=d-l~ - 8)-i" Therefore, in this stage of the spreading we have a = (16/3)I/3a018 
(i + exp(-Kot/p)] -z/3, K = 81~ -z, and hence this stage is called the expon- 
ential stage. 

Finally, we note that the power-law stage is the more important in practice, since in 
the exponential stage the boundary of the drop is practically motionless. The exponential 
stage of spreading can become significant for small 8 << i. 

NOTATION 

o, surface tension; p, density; g, acceleration of gravity; p, dynamical viscosity. 
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DECREASE OF RESISTANCE IN A MICROPOLAR LIQUID 

M. A. Brutyan and P. L. Krapivskii UDC 532.5.032 

Modified equations of motion of a micropolar liquid are derived. It is shown 
that, in nonlinear problems, a lower resistance is possible in comparison with 
an ordinary liquid, even in the case of laminar flow. 

There are many ways to describe rheologically complex liquids, where the asymmetry of 
the stress tensor and the deformation rate tensor (viscoelastic liquids), the relaxation 
terms (Maxwellian liquid), etc. are accounted for to a greater or lesser degree. The phe- 
nomenological derivation of the equations [I] where only the asymmetry of the stress tensor 
is considered already leads to an extremely complex system of 19 partial differential equa- 
tions with 22 viscosity coefficients. Introduction of the additional assumption of isotropy 
made it possible to reduce this system to seven equations [2, 3], which are at present wide- 
ly used for describing liquids with polymer additions, liquid crystals, blood, etc. (see, 
for instance, surveys [4, 5]). 

Asymmetric hydromechanics [2, 3] is characterized by the nonsymmetric stress tensor 
oij and the additional tensor of micromoments mij: 

a~j - -- p,5~j + ~ (O y i + O jV~) + k (O y j  -- ~j,~,,~), ( i )  

mij : ~Sij div Q + [30jQ i + ?OiQj, O~ = a/Oxi. (2 )  

Thus, besides the coefficient of dynamic viscosity ~, there are in asymmetric hydro- 
dynamics three additional rotational viscosity coefficients and the coefficient k, which pro- 
vides the measure of a particle's "coupling" with its ambient. The dilatational viscosity 
coefficient does not figure in (i), since we limit our considerations here to the case of 
incompressible liquids. It is evident from (i) and (2) that, in Eulerian presentation, a 
state in asymmetric hydromechanics is determined not only be the field of velocities V, but 
also by the field of angular velocities of microrotation ~. 

The equations of motion in asymmetric hydromechanics are given by 

dV 
9-- = (~ + k)AV+ krot~.--Vp , divV = 0, (3) 

dt 

9j d, QQ = (= + ~)grad(divQ) + ~,AQ --2kf~ + krotV. (4) 
dt 

The microinertial characteristics of the medium were not taken into account in [2] [the 
left-hand side of Eq. (4) was assumed to be zero], while Eq. (4) was used in [3] and the sub- 
sequently published papers (see the literature cited in [4, 5]). 
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